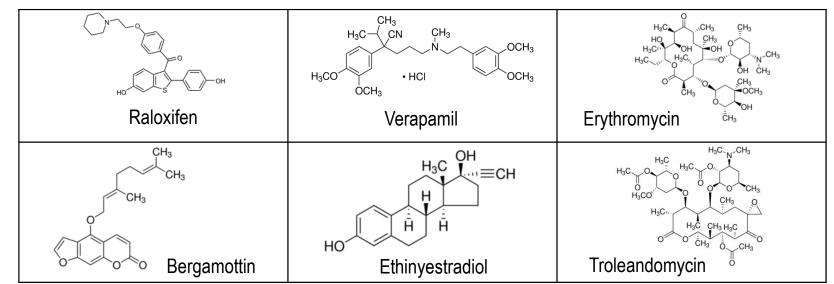
An alternative method for the determination of K_i and k_{inact} parameters for irreversible inhibitor profiling

David Whalley, Fred Kuenzi, Kevin Nash, Stuart Robjohns
Discovery, Charles River, Chesterford Research Park, Cambridge, CB10 1XL, United Kingdom


INTRODUCTION

- Over recent years there has been a resurgence in the focussed development of irreversible inhibitors that act via a covalent, time-dependent mechanism. Traditionally the potential for enzyme inhibition has been determined by steady state affinity measurements and quantified in terms of IC₅₀. However this parameter in isolation may be misleading when applied to ranking different covalent compounds for structure-activity-relationship studies.
- It has been proposed that in addition to IC_{50} , the rate of covalent modification should be taken into consideration (Strelow, 2017). This is defined by the rate constant k_{inact}/K_i where K_i , the inhibition constant describes the potency of the first reversible binding event and k_{inact} the maximum rate in inactivation.
- A commonly used technique is to derive k_{inact}/K_i by plotting the observed rate of inactivation (k_{obs}) as a function of inhibitor concentration. Other methods employ an approach based on the effect of time on IC₅₀ which typically involves many pre-incubation steps. In 2009 Krippendorff et al described a novel alternative to this whereby the pre-incubation step is omitted and data is fitted to a 3D model in IDBS ActivityBase[™].
- At Charles River we have established a capability which utilises the Krippendorff time-dependent IC_{50} -based method in k_{inact}/K_i studies. Here, we present a comparative study where we applied standard time-course/ k_{obs} fitting with the time-dependent IC_{50} method using data generated from a recombinant CYP3A4 system.

2 EX

EXPERIMENTAL

• This study was based on the work detailed by Krippendorff et al.,2009. We used a commercially available recombinant CYP3A4 fluorogenic assay (Vivid® CYP3A4 Blue, Life Technologies™, P2858) to kinetically profile a panel of well characterised time-dependent CYP 3A4 inhibitors. The assay measures CYP3A4-mediated oxidation of a BOMCC substrate which liberates fluorescent metabolites that are excited in the visible spectrum. The amount of fluorescent signal is directly proportional to the amount of CYP3A4 activity.

Table 1: Time-dependent CYP3A4 inhibitors

- 1. Compounds were assayed in duplicate as a 20 point 2-fold serial dilution with a top concentration of 100 μΜ.
- 2. The reaction was initiated by the addition of CYP3A4/reductase regeneration system to a mixture of NADP, BOMCC substrate and compounds in kit assay buffer. Data was collected on the Tecan Safire II at 180s intervals for 30 minutes (Excitation=415nm, Emission =460nm).

3 DATA ANALYSIS

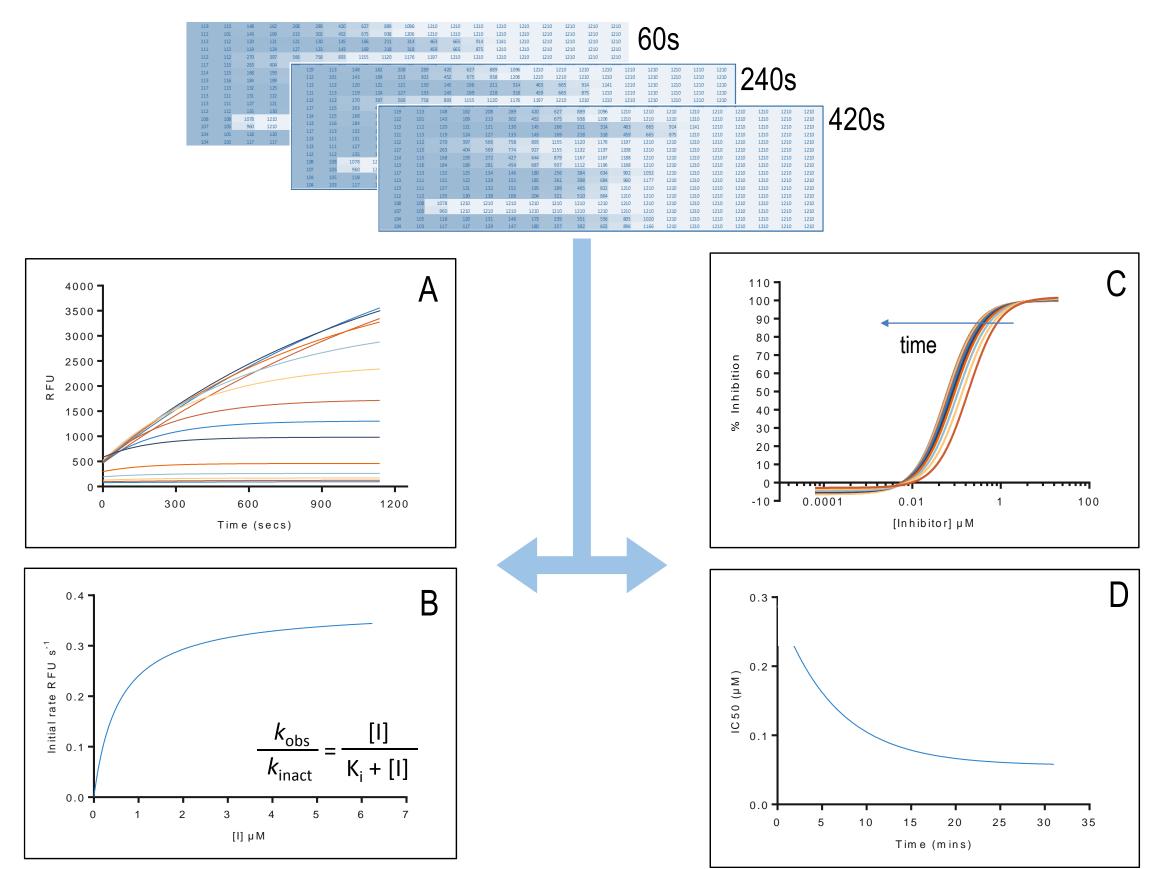
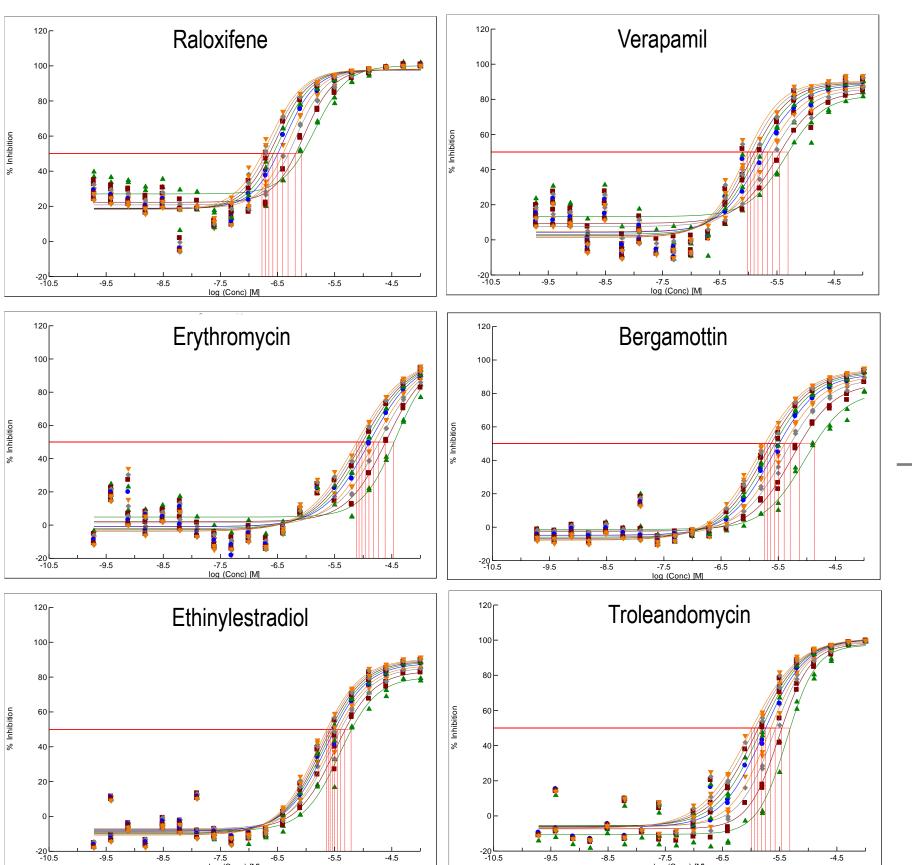


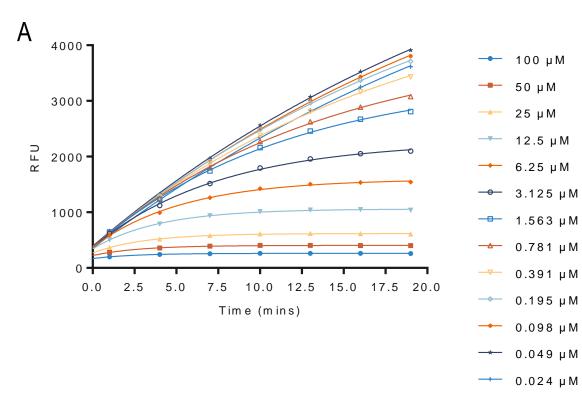
Figure 1: Schematic of the approach to data analysis. A) Time-course data. B) Secondary plot of $k_{\rm obs}$ vs. [I]. C) IC₅₀ curves at various timepoints. D) Plot of IC₅₀ vs. time. Application of the XLFit template significantly reduces the data turn around time

- **1.** Kinetic datasets were analysed by fitting the time-course data to a single exponential to derive k_{obs} for each inhibitor concentration. A secondary plot of k_{obs} vs. [I] was used to determine k_{inact} and K_i (equation inset). All analyses were carried out in Graphpad Prism.
- **2.** The same raw datasets were normalised and used to produce inhibition curves at each timepoint in order to generate IC_{50} values using a 4 parameter fit model with a Huber robust fitting algorithm. The values were plotted against incubation time and the Krippendorff model fitted to obtain K_i and k_{inact} estimates, using XLFit and IDBS ActivityBaseTM.

and IDE

CONCLUSIONS


- The time-dependent IC_{50} fitting method in ActivityBase XLFit facilitated more efficient data analysis compared to the time-course/ k_{obs} approach in Graphpad Prism and allowed K_i and k_{inact} parameters for six CYP3A4 inhibitors to be calculated within 30 minutes.
- In most cases we found good agreement between the two fitting methods in terms of the k_{inact} parameter however there was a difference of up to one order of magnitude with respect to the K_{i.} Despite this, the test compounds showed the same rank order with respect to the k_{inact}/K_i ratio.
- When compared to literature K_i values we found those derived using time-dependent IC₅₀ readout to be closest with all compounds apart from Ethinyestradiol being within 3-fold of the human liver microsomes results
- The Krippendorff method is currently being utilised on a number of projects at Charles River and is proving to be an effective method for irreversible inhibitor profiling


References: B.-F. Krippendorff, R. Neuhaus, P. Lienau, A. Reichel, W. Huisinga, Mechanism-based Inhibition: Deriving K_i and k_{inact} directly from Time-Dependent IC50 Values, J Biomol Screen. 14 (2009), pp. 913-923

M Strewlow, A Perspective on the Kinetics of Covalent and Irreversible Inhibition, SLAS Discov., 1 (2017), 3-20

4

RESULTS

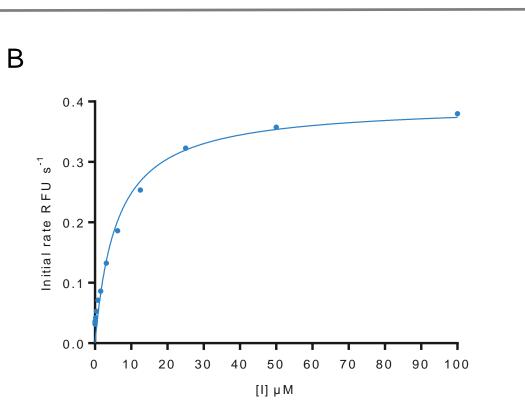
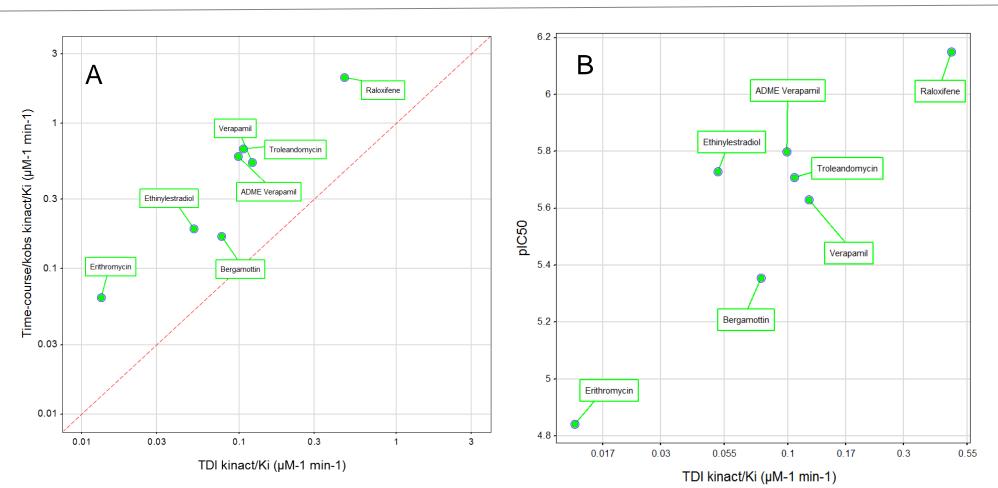



Figure 2: XLFit IC_{50} curve profiles for the six time-dependent CYP3A4 inhibitors. Data generated between 3.5 and 27.5 minutes. Dotted red lines indicate the point of inflection at each timepoint. All curves show a leftward shift with time.

Figure 3: Graphpad Prism Erithromycin inhibition fitting using k_{obs} . A) Time-course data. B) Secondary plot of k_{obs} vs [I]

Figure 4: Correlation plots. A) k_{inact}/K_i ratios determined using k_{obs} (*y*-axis) or time-dependent IC_{50} fitting (*x*-axis). B) The relationship between pIC50 and k_{inact}/K_i derived using time-dependent IC_{50} values

CYP3A4 Inhibitor	Κ _i (μΜ)*	k _{inact} min-1*	k _{inact} /Κ _i (^{min-1} μΜ ⁻¹)*	Κ _i (μΜ)†	K _{inact} min-1†	k _{inact} /Κ _i (^{min-1} μΜ ⁻¹)†	IC ₅₀ (μΜ) @3.5 minutes	IC ₅₀ (μΜ) @27.5 minutes	Literature Κ _i (μΜ)
Raloxifene	2.1	1.004	0.470	0.235	0.487	2.073	0.708	0.115	9.9
Verapamil	5.0	0.610	0.122	0.392	0.211	0.538	2.343	0.495	4.2
Erithromycin	29.9	0.398	0.013	6.435	0.408	0.063	14.402	3.881	81.8
Bergamottin	15.8	1.225	0.078	1.708	0.284	0.166	4.411	0.719	7.7
Ethinylesradiol	2.2	0.116	0.052	0.600	0.113	0.188	1.867	0.799	18.0
Troleandomycin	3.6	0.388	0.106	0.561	0.375	0.669	1.955	0.435	1.8

Table 2: Comparison of time-dependent inhibitor kinetic parameters calculated by time-dependent IC_{50} (*) or time-course/ k_{obs} (†) methods and compared to literature. Literature K_i values are based on human liver microsomes.