LakePharma's Protein Engineering Symposium

10/2017

www.criver.com

For access to additional scientific posters, please visit www.criver.com/posters.

charles river

Meeting the Challenges of Antibody Drug Conjugate Characterization by LC-MS/(MS)

Jing Li¹, Andrew Hanneman, Mario DiPaola Charles River, 8 Henshaw Street, Woburn, MA 01801 Mario.DiPaola@CRL.com 617-234-0001

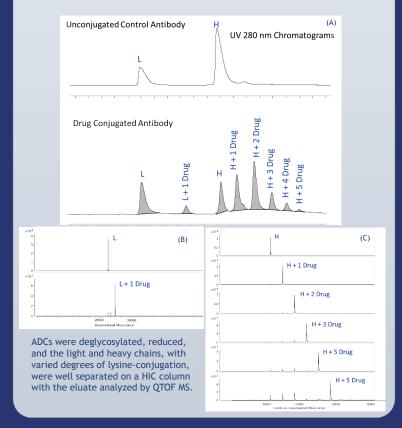
¹Currently at Alnylam Pharmaceuticals Inc.

Meeting the Challenges of Antibody Drug Conjugate Characterization by LC-MS/(MS)

Jing Li¹, Andrew Hanneman, Mario DiPaola

Charles River, 8 Henshaw Street, Woburn, MA 01801 Mario.DiPaola@CRL.com 617-234-0001

ABSTRACT


Antibody-drug conjugates (ADCs) are potent biopharmaceuticals comprised of a cytotoxic agent attached to an antibody or antibody fragment via a chemical linker. As complex three part (bio)molecules, ADCs require analytical considerations intersecting the sometimes disparate modes of small and large molecule investigations, and mass spectrometry plays a key role in their characterization. We describe LC-MS/(MS) approaches addressing various ADC attributes, including drug-antibody ratio (DAR) determination, mapping of drug conjugation sites, and accounting for various drug/linker chemistries including associated impurities. Selected MS-based methodologies are designed based on the class of ADC molecule, the conjugation chemistry, and any requirements for fine-scale structural understanding.

Analysis of ADCs with attachments through cysteine, lysine, or other sites may require significantly different strategies. The application of native vs. denaturing LC-MS, including instrument optimization in response to various linker chemistries, is discussed. For characterization of site-to-site drug conjugation, sequence-dependent selection of appropriate endopeptidases and application of appropriate MS/MS fragmentation approaches is considered. Impurity characterization is carried out by accurate mass and MS/MS analysis to a significant degree, and the limitations of MS-based methodologies are kept in mind with regard to the known challenges of small molecule structural characterization.

Results and Discussion

Characterization of Reduced Antibody Drug Conjugates with LC-MS

Figure 1. (A) UV 280 chromatograms of reduced unconjugated antibody and drug conjugated antibody separated on a hydrophobic interaction column (HIC) using an MS-friendly mobile phase. Deconvoluted mass spectra of (B) light and (C) heavy chains obtained with a high resolution mass QTOF spectrometer.

Drug-Antibody Ratio Determination via Intact LC-MS

Figure 2. DAR Analysis at the intact mass level under denaturing conditions: Acetonitrile /Water with TFA.

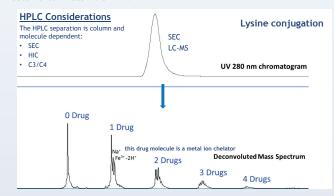
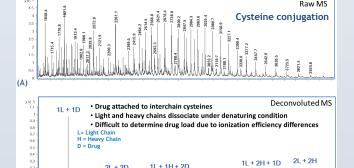
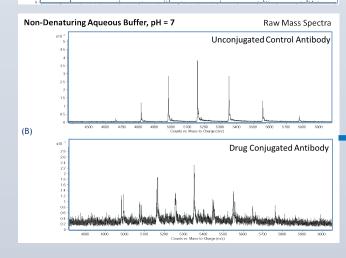
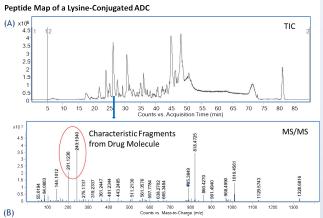
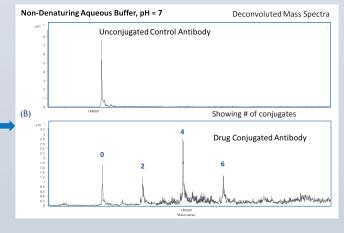




Figure 3. Analysis of Intact ADCs under denaturing vs. non-denaturing LC-MS conditions: (A) denaturing, (B) non-denaturing for cysteine conjugations.

1L + 1H + 2D



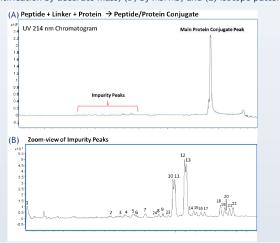
CONCLUSIONS


Mass Spectrometry is a key tool for ADC characterization, including DAR determination, drug linked site mapping and investigations of drug-linker chemistry including related impurities.

DAR and Conjugation Site Analysis via LC-MS Peptide Mapping

Figure 4. Endopeptidase digestion followed by QTOF LC-MS/MS. (A) Identification of drug-linked peptides, (B) DAR tabulation.

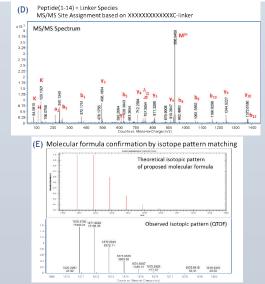
Seq Location	Sequence	Theor. Mass (Da)	Obs. Mass (Da)	Delta ppm	RT (min)	Abundance	Observed Drug- Conjugations	Conjugated/ Unconjugated Ratio	
1-27	XXXXXXXXXXXKKX XXXXKXXXKXXXX	xxxx.yyyy	xxxx.yzzz	0.27	26.2	40911846	None		
1-27	XXXXXXXXXXXKKX XXXXKXXXKXXXX			-0.29	34.7	853617		0.08	
1-27	XXXXXXXXXXXKKX XXXXKXXXKXXXX			0.15	35.3	579500	1*Drug-conjugation		
1-27	XXXXXXXXXXXKKX XXXXKXXXKXXXX			0.28	36.0	1009113	1 Drug-conjugation		
1-27	XXXXXXXXXXXKKX XXXXKXXXKXXXX			-0.03	37.0	912150			
80-97	YKYYYYKYYYYYYY YY			0.52	27.6	7817319	None	0.18	
80-97	YKYYYYKYYYYYYY YY			0.01	39.3	1409249	1*Drug-conjugation		
131-145	ZZZKZZZZZZZZZ			0.35	25.1	7653427	None		
131-145	ZZZKZZZZZZZZZZ			0.10	38.3	996768	1*Drug-conjugation	0.13	


ACKNOWLEDGMENTS

We would like to acknowledge all the members of Charles River for their

The work described herein is intended for research purposes only; not intended for any human or animal therapeutic or diagnostic use, unless otherwise stated. The trademarks or copyrights mentioned herein are

Impurity Characterization


Figure 5. Characterization of impurities in a peptide/protein conjugate. (A) Full-view C4 LC-MS chromatogram, (B) Zoom-in of impurities, (C) Identification by accurate mass, (D) by MS/MS, and (E) isotope patterns.

(C) Peak Identification

Species	Theoretical Monoisotopic Mass (Da)	Observed Monoisotopic Mass (Da)	Delta ppm	Retention Time (min)	Peak #	Peak Area	Peak Area (%)*
Peptide(1-4)	XXXX.XXXX	xxxx.yyyy	0.58	2.1	1	131	0.32
Peptide(5-14) + Linker			1.24	16.8 & 17.0	10 & 11	609	1.51
Peptide(5-14) + Linker			-1.17	15.1	24	29	0.07
Peptide(1-14) + Linker			1.02	17.9 & 18.1	12 & 13	890	2.21
Peptide(1-14) + Linker			0.21	16.4	23	10	0.02
Peptide(5-14) + Linker - H ₂ O			0.89	13.1 & 13.4	6	30	0.07
Peptide(5-14) + Linker - H ₂ O			0.07	15.3 & 15.8	8 & 9	97	0.24
Peptide(5-14) + Linker - H ₂ O			0.52	21.5 & 21.9	18 & 19	177	0.44
Peptide(1-14) + Linker - H ₂ O			0.70	18.8 & 19.1	14 & 15	88	0.22
Peptide(1-14) + Linker - H ₂ O			-1.57	19.5 & 19.9	16 & 17	98	0.24
Peptide(1-14) + Linker - H ₂ O			-0.65	22.4 & 22.7	21 & 22	178	0.44
Peptide(5-14) + Linker + Sugar- H ₂ O			1.30	12.9	5	65	0.16
Peptide(1-14) + Linker + Sugar- H ₂ O			0.59	14.1	7	55	0.14
Peptide(5-14) + Linker + H ₂ O			-1.01	10.7	2	11	0.03
Peptide(5-14) + Linker + H ₂ O			0.65	11.6	3	10	0.02
Peptide(1-14) + Linker + H ₂ O			0.95	12.2	4	20	0.05
Peptide(1-14) + Linker + H ₂ O			0.53	13.1	6	30	0.07
Peptide(1-14) + Linker + Peptide(1-4) - H ₂ O			-0.89	22.1	20	30	0.07

* % relative to the main protein peak.

