

High Content Analysis of phenotypic assays in cancer drug discovery

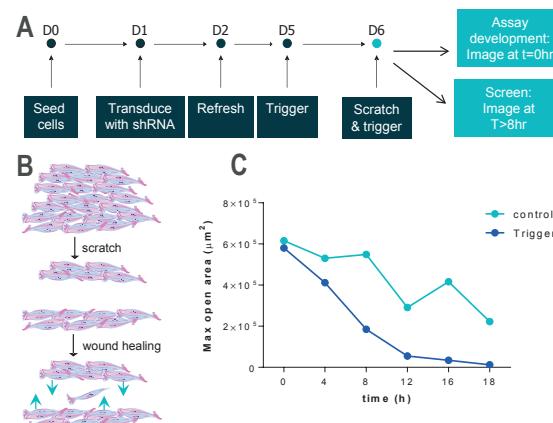
Hajo Schiewe¹, João Carvalho², Fleur Stevenhagen², Servane Lachize², Rhea van de Bospoort², Melek Atalar², Kimberly Lo², Lianne van Beek², Marta da Silva², Niki van der Steenstraten², Viola Tabel², Jeroen Esselink², Jeroen Overman², Ian Gowers³, Roger Clark³, Shilina Roman⁴ and Shushant Jain²

¹Charles River, Wilmington, Massachusetts, USA, ²Charles River Leiden NL, ³Saffron Walden UK and ⁴Harlow UK

Contact: UK-EarlyDiscoveryClientServices@crl.com

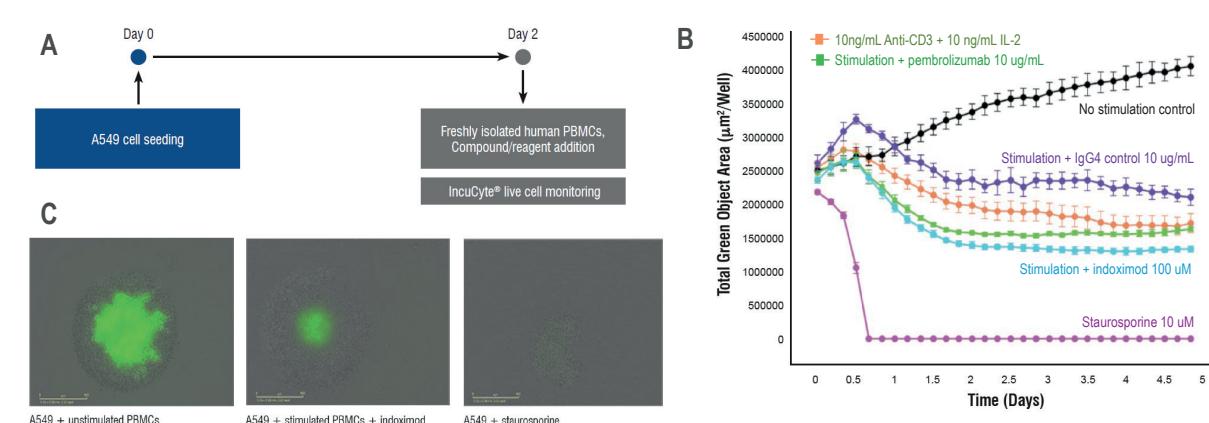
1 INTRODUCTION

Charles River Laboratories (CRL) has developed many disease-relevant cellular models to screen small molecules and genetic modifiers for target and phenotypic based drug discovery. Our expertise and portfolio in bespoke cellular model development covers several therapeutic areas including oncology and a wide variety of target classes. Complex cellular models derived from primary cells, patient derived embryonic stem cells and induced pluripotent stem cells have been adapted for phenotypic screening. Models have been further developed to produce physiologically relevant multicellular structures, such as 3D spheroids and co-cultures. Combining complex biological systems with multiparametric high content analysis provides detailed single cell quantification of cellular and subcellular biology. Such validated High Content (HC) assays can be applied to both target and phenotypic based discovery platforms to support preclinical drug discovery and improve translation of targets and compounds to the clinic.



2 ALGORITHMS DEVELOPED IN ONCOLOGY

Formats	Assays developed
Cell viability and synergistic cytotoxic studies	2D: Clonogenic assay, cell viability assay (Hoescht/PI), immunotherapy cytotoxic co-culture assays
Anchorage independence and colony forming assays (in 3D)	3D: Multiple cell lines and co-culture
Apoptosis, cell death, DNA damage response, cellular stress and degeneration	Early and late stage apoptosis markers, mitochondrial function, nuclear condensation, DNA damage assay and downstream signaling assays, foci, stress granules, protein inclusions
Cell cycle	Cell cycle progression and S phase
Cell motility and migration	Scratch wound assay and Boyden chamber motility assay
Acquisition of invasive properties	Epithelial to mesenchymal transition (EMT) assay
Post translational modification	Multiple assays for signalling events (phosphorylation and acetylation)
Marker expression	Multiple assays to assess transduction efficiency, epigenetic target and biomarker expression
Receptor internalization and degradation	Nuclear receptor degradation, receptor internalisation, ligand binding
Translocation of transcription factors	Multiple cytosolic/nuclear translocation assays


3 EXAMPLES OF HIGH-CONTENT BASED ONCOLOGY ASSAYS

SCRATCH MIGRATION ASSAY

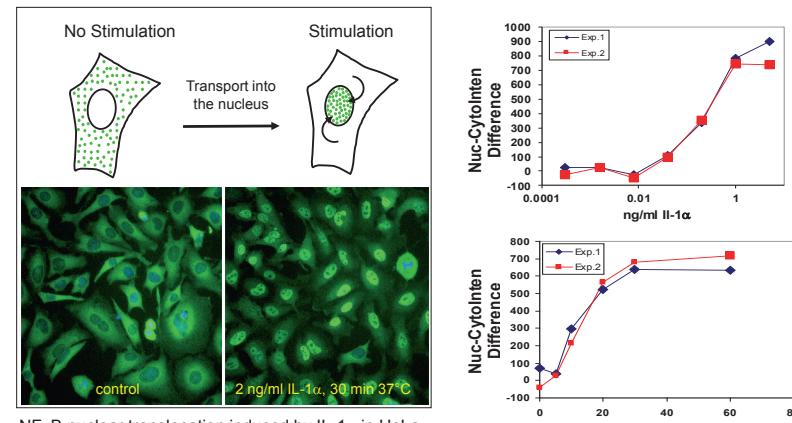
Figure 1. Scratch migration assay. (A) Fibroblasts were transduced with shRNA encoding adenovirus 1 day post seeding, after 4 days of treatment, the cells were triggered with PDGF-BB. A scratch was created 1 day post trigger addition. (B) Graphical representation of the migration of fibroblasts into the open area created by the scratch. (C) Trigger induces full wound closure after 18h. (D) Example of images depicting migration into open area and inhibition of cell migration. This assay uses a high content algorithm developed to segment and quantify the open area to identify migration inhibition by target gene knockdown.

IMMUNO-ONCOLOGY 3D SPHEROID T CELL CYTOTOXIC ASSAY

Figure 2. 3D Spheroid T cell cytotoxicity Assay. (A) A549 cells were transfected with IncuCyte® Nuclight Green lentivirus reagent to generate a stable cell line. Cells were seeded in ultra-low attachment plates to enable spheroid formation, and treated after 2 days of culture with activated T cells in the absence and presence of test compounds or therapeutic antibodies. This method uses the IncuCyte® live-cell analysis system to generate data in the form of presentation-ready and time-lapse graphs and movies. (B) Example of data generated with IncuCyte® over a period of 5 days after treatment. (C) Examples of live cell imaging acquired with IncuCyte®.

4 INSTRUMENTS/DATA ANALYSIS

IN Cell 2200


IN Cell 6000

IncuCyte S3

Our extensive experience in the development of complex cellular assays: Execution of high-throughput phenotypic screenings involving multi-parametric readouts, design of quantitative image segmentation algorithms, and experience in a wide variety of disease models (incl. co-cultures, 3D and organoid systems) allows us to approach with confidence a diversity of preclinical drug discovery programs. Multi-parametric feature extraction is performed by using analytical software tools such as IN Cell Developer Toolbox, IN Cell Analyzer Worstation and Cell Profiler™.

NUCLEAR TRANSLOCATION ASSAY

Figure 3. Nuclear translocation assay. NF- κ B signaling in inflammation and cancer. In the control situation NF- κ B is detected in the cytoplasm and not in the nucleus. Once cells are treated with IL-1 α , nuclear translocation of NF- κ B is evident. Using HC analysis the concentration- and time-dependent effects of IL-1 α in the nuclear translocation of NF- κ B could be studied in HeLa cervical cancer cells by ratio metric quantification of NF- κ B expression in the nucleus versus the cytoplasm.